二项分布即重复n次独立的伯努利试验。在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从0-1分布。
二项分布即重复n次独立的伯努利试验。在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从0-1分布。
二项分布
数学
Binomial Distribution
大气科学;气候学
伯努利试验
在概率论和统计学中,二项分布是n个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当n=1时,二项分布就是伯努利分布,二项分布是显着性差异的二项试验的基础。当n充分大,nP很小时,二项分布近似于参数为λ=nP的泊松分布,计算结果表明,在X区间[0,nP+2σ]内,泊松拟合值才能近似代替二项分布数据。[1]
考虑只有两种可能结果的随机试验,当成功的概率(π)是恒定的,且各次试验相互独立,这种试验在统计学上称为伯努利试验(Bernoullitrial)。如果进行n次伯努利试验,取得成功次数为X(X=0,1,…,n)的概率可用下面的二项分布概率公式来描述:
P=C(X,n)*π^X*(1-π)^(n-X)
式中的n为独立的伯努利试验次数,π为成功的概率,(1-π)为失败的概率,X为在n次伯努里试验中出现成功的次数,表示在n次试验中出现X的各种组合情况,在此称为二项系数(binomialcoefficient)。
所以的含义为:含量为n的样本中,恰好有X例阳性数的概率。
二项分布(BinomialDistribution),即重复n次的伯努利试验(BernoulliExperiment),用ξ表示随机试验的结果。如果事件发生的概率是P,则不发生的概率q=1-p,N次独立重复试验中发生K次的概率是
P(ξ=K)=C(n,k)*p^k*(1-p)^(n-k),其中C(n,k)=n!/(k!*(n-k)!)注意!:第二个等号后面的括号里的是上标,表示的是方幂。
那么就说这个属于二项分布。
其中P称为成功概率。
记作ξ~B(n,p)期望:Eξ=np
方差:Dξ=npq
其中q=1-p
证明:由二项式分布的定义知,随机变量X是n重伯努利实验中事件A发生的次数,且在每次试验中A发生的概率为p.因此,可以将二项式分布分解成n个相互独立且以p为参数的(0-1)分布随机变量之和.
设随机变量X(k)(k=1,2,3...n)服从(0-1)分布,则X=X(1)+X(2)+X(3)....X(n).
因X(k)相互独立,所以期望:E(X)=E[X(1)+X(2)+X(3)....X(n)]=np.
方差:D(X)=D[X(1)+X(2)+X(3)....X(n)]=np(1-p).
证毕.
以上证明摘自高等教育出版社《概率论与数理统计》第四版
如果
1.在每次试验中只有两种可能的结果,而且是互相对立的;
2.每次实验是独立的,与其它各次试验结果无关;
3.结果事件发生的概率在整个系列试验中保持不变,则这一系列试验称为伯努利实验。
在这试验中,事件发生的次数为一随机事件,它服从二次分布.二项分布可以用于可靠性试验。可靠性试验常常是投入n个相同的式样进行试验T小时,而只允许k个式样失败,应用二项分布可以得到通过试验的概率.
若某事件概率为p,现重复试验n次,该事件发生k次的概率为:P=C(n,k)×p^k×(1-p)^(n-k).C(n,k)表示组合数,即从n个事物中拿出k个的方法数。
1.各观察单位只能具有相互对立的一种结果,如阳性或阴性,生存或死亡等,属于两分类资料。
2.已知发生某一结果(阳性)的概率为π,其对立结果的概率为1-π,实际工作中要求π是从大量观察中获得比较稳定的数值。
3.n次试验在相同条件下进行,且各个观察单位的观察结果相互独立,即每个观察单位的观察结果不会影响到其他观察单位的结果。如要求疾病无传染性、无家族性等。
1.二项分布的均数和标准差在二项分布资料中,当π和n已知时,它的均数μ及其标准差σ可由式(7.3)和(7.4)算出。
μ=nπ(7.3)
σ=(7.4)
若均数和标准差不用绝对数表示,而是用率表示时,即对式(7.
3)和(7.4)分别除以n,得
μp=π(7.5)
σp=(7.6)
σp是样本率的标准误的理论值,当π未知时,常用样本率p作为π的估计值,式(7.6)变为:
sp=(7.7)
2.二项分布的累计概率(cumulativeprobability)常用的有左侧累计和右侧累计两种方法。从阳性率为π的总体中随机抽取含量为n的样本,则
(1)最多有k例阳性的概率
(7.8)
(2)最少有k例阳性的概率
(7.9)
其中,X=0,1,2,…,k,…,n。
3.二项分布的图形已知π和n,就能按公式计算X=0,1,…,n时的P(X)值。以X为横坐标,以P(X)为纵坐标作图,即可绘出二项分布的图形,如图7.1,给出了p=0.5和p=0.3时不同n值对应的二项分布图。
二项分布的形状取决于π和n的大小,高峰在m=np处。当p接近0.5时,图形是对称的;p离0.5愈远,对称性愈差,但随着n的增大,分布趋于对称。当n→∞时,只要p不太靠近0或1,特别是当nP和n(1-P)都大于5时,二项分布近似于正态分布。关于二项分布近似为正态分布的判定条件,不同着述中存在争议,在甘怡群《心理与行为科学统计》中:当np>10且n(1-p)>10时,二项分布可以近似为正态分布(第72页);在张厚粲《现代心理与教育统计学》中:当p(1-p)且n(1-p)≥5时,二项分布可以近似为正态分布(第178页)。
π=0.5时,不同n值对应的二项分布
π=0.3时,不同n值对应的二项分布
1.关于二项分布的泊松近似计算问题·知网空间
《浪漫医生金实福》(낭만닥터김사부)是一部由刘仁值执导,柳演锡、徐玄振、韩石圭、金旻载等主演的电视剧,于2016年11月7日播...
偁是一个汉语汉字,拼音是 chēng、chèn ,基本含义:古同“称”。中文名偁拼音chēng,chèn部首亻五笔WEMF仓颉OBGB郑码NPLB...
吕秀莲,女,1944年6月7日生,中国台湾桃园县人,祖籍福建省南靖县书洋村。毕业于中国台湾大学法律系、台大法律研究所,系中国台...
气压梯度(pressuregradient),单位距离间的气压差叫做气压梯度,气压差异表示气压分布不均匀程度的空间矢量。其方向多垂直于等...